Mutant alleles of the Drosophila trithorax gene produce common and unusual homeotic and other developmental phenotypes.

نویسنده

  • T R Breen
چکیده

trithorax (trx) encodes chromosome-binding proteins required throughout embryogenesis and imaginal development for tissue- and cell-specific levels of transcription of many genes including homeotic genes of the ANT-C and BX-C. trx encodes two protein isoforms that contain conserved motifs including a C-terminal SET domain, central PHD fingers, an N-terminal DNA-binding homology, and two short motifs also found in the TRX human homologue, ALL1. As a first step to characterizing specific developmental functions of TRX, I examined phenotypes of 420 combinations of 21 trx alleles. Among these are 8 hypomorphic alleles that are sufficient for embryogenesis but provide different levels of trx function at homeotic genes in imaginal cells. One allele alters the N terminus of TRX, which severely impairs larval and imaginal growth. Hypomorphic alleles that alter different regions of TRX equivalently reduce function at affected genes, suggesting TRX interacts with common factors at different target genes. All hypomorphic alleles examined complement one another, suggesting cooperative TRX function at target genes. Comparative effects of hypomorphic genotypes support previous findings that TRX has tissue-specific interactions with other factors at each target gene. Some hypomorphic genotypes also produce phenotypes that suggest TRX may be a component of signal transduction pathways that provide tissue- and cell-specific levels of target gene transcription.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Trithorax-mimic allele of Enhancer of zeste renders active domains of target genes accessible to polycomb-group-dependent silencing in Drosophila melanogaster.

Two antagonistic groups of genes, the trithorax- and the Polycomb-group, are proposed to maintain the appropriate active or inactive state of homeotic genes set up earlier by transiently expressed segmentation genes. Although some details about the mechanism of maintenance are available, it is still unclear how the initially active or inactive chromatin domains are recognized by either the trit...

متن کامل

The ash-1, ash-2 and trithorax genes of Drosophila melanogaster are functionally related.

Mutations in the ash-1 and ash-2 genes of Drosophila melanogaster cause a wide variety of homeotic transformations that are similar to the transformations caused by mutations in the trithorax gene. Based on this similar variety of transformations, it was hypothesized that these genes are members of a functionally related set. Three genetic tests were employed here to evaluate that hypothesis. T...

متن کامل

Molecular genetic analysis of the Drosophila melanogaster gene absent, small or homeotic discs1 (ash1).

The absent, small or homeotic discs1 gene (ash1) is one of the trithorax set of genes. Recessive loss of function mutations in ash1 cause homeotic transformations of imaginal disc derived tissue which resemble phenotypes caused by partial loss or gain of function mutations in genes of the Antennapedia Complex and bithorax Complex. F2 screens were used to isolate P element insertion alleles and ...

متن کامل

Transcriptional network controlled by the trithorax-group gene ash2 in Drosophila melanogaster.

The transcription factor absent, small, or homeotic discs 2 (ash2) gene is a member of the trithorax group of positive regulators of homeotic genes. Mutant alleles for ash2 are larvalpupal lethals and display imaginal disc and brain abnormalities. The allele used in this study is a true mutant for the trithorax function and lacks the longest transcript present in wild-type flies. In an attempt ...

متن کامل

Genetic characterization of ms (3) K81, a paternal effect gene of Drosophila melanogaster.

The vast majority of known male sterile mutants of Drosophila melanogaster fail to produce mature sperm or mate properly. The ms(3) K81(1) mutation is one of a rare class of male sterile mutations in which sterility is caused by developmental arrest after sperm entry into the egg. Previous studies showed that males homozygous for the K81(1) mutation produce progeny that arrest at either of two ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 152 1  شماره 

صفحات  -

تاریخ انتشار 1999